

#### Journée Outcomerea Paris- 4 décembre 2015

#### Désescalade antibiotique en réanimation

#### **Emmanuel Weiss**

Département d'Anesthésie-Réanimation, Hôpital Beaujon, GHPNVS, Clichy

INSERM UMR\_S1149, Centre de Recherche sur l'Inflammation, Réponses immunitaires et de stress dans les maladies du foie Université Paris 7 Denis Diderot, Sorbonne-Paris Cité



# Désescalade antibiotique en réanimation

- 1. Données de la littérature
  - Définition
  - Impact sur le pronostic des patients
  - Impact sur la consommation antibiotique
  - Impact sur l'émergence de résistances bactériennes
  - Etude de l'effet de la désescalade ATB dans les PAVM à BGN sur les données de la base OUTCOMEREA

# Désescalade antibiotique en réanimation

#### 1. Données de la littérature

- Définition
- Impact sur le pronostic des patients
- Impact sur la consommation antibiotique
- Impact sur l'émergence de résistances bactériennes
- 2. Etude de l'effet de la désescalade ATB dans les PAVM à BGN sur les données de la base OUTCOMFREA

 Modifier une antibiothérapie empirique initiale efficace en fonction des résultats microbiologiques et des données cliniques disponibles:



- Modifier une antibiothérapie empirique initiale efficace en fonction des résultats microbiologiques et des données cliniques disponibles:
- en changeant la molécule « pivot » du traitement pour une molécule dont le spectre est plus étroit



- Modifier une antibiothérapie empirique initiale efficace en fonction des résultats microbiologiques et des données cliniques disponibles:
- en changeant la molécule « pivot » du traitement pour une molécule dont le spectre est plus étroit
- en arrêtant une des molécules du traitement empirique en cas de tri- ou de bithérapie antibiotique initiale



- Modifier une antibiothérapie empirique initiale efficace en fonction des résultats microbiologiques et des données cliniques disponibles:
- en changeant la molécule « pivot » du traitement pour une molécule dont le spectre est plus étroit
- en arrêtant une des molécules du traitement empirique en cas de tri- ou de bithérapie antibiotique initiale
- en associant les deux mesures précédentes



- Modifier une antibiothérapie empirique initiale efficace en fonction des résultats microbiologiques et des données cliniques disponibles:
- en changeant la molécule « pivot » du traitement pour une molécule dont le spectre est plus étroit
- en arrêtant une des molécules du traitement empirique en cas de tri- ou de bithérapie antibiotique initiale
- en associant les deux mesures précédentes
- Une autre stratégie consiste à raccourcir la durée de traitement



- Modifier une antibiothérapie empirique initiale efficace en fonction des résultats microbiologiques et des données cliniques disponibles:
- en changeant la molécule « pivot » du traitement pour une molécule dont le spectre est plus étroit

But commun: diminuer la pression de sélection

**MAIS** 

Définition extrêmement large et non consensuelle

| Définitions de                              | e la déseso   | ala  | de utilisées                | dans la literrature                |
|---------------------------------------------|---------------|------|-----------------------------|------------------------------------|
| Narrowing spectrum of activity              | Alvarez-Lerma | 2006 | Prospective observational   | Nosocomial pneumonia               |
|                                             | Eachempati    | 2009 | Retrospective observational | VAP in surgical patients           |
|                                             | Schlueter     | 2010 | Retrospective observational | Health-care associated pneumonia   |
|                                             | De Waele      | 2010 | Retrospective observational | Prescribed empiric meropenem       |
|                                             | Hibbard       | 2010 | Retrospective observational | VAP                                |
|                                             | Montravers    | 2011 | Prospective observational   | Suspected and confirmed infections |
|                                             | Kim           | 2012 | Randomised controlled trial | Hospital-acquired pneumonia        |
| Shortening duration / discontinuing therapy | Singh         | 2000 | Randomised controlled trial | Nosocomial pneumonia               |
|                                             | Chastre       | 2003 | Randomised controlled trial | VAP                                |
|                                             | Micek         | 2004 | Randomised controlled trial | VAP                                |
| Combination of definitions                  |               |      |                             |                                    |
| Switching from combination to monotherapy   | - Leone       | 2003 | Prospective observational   | Septic shock                       |
| Narrowing spectrum of activity              | Giantsou      | 2007 | Prospective observational   | VAP                                |

2007

2011

2013

2008

2012

2004

2010

2011

Leone

Shime

Joffe

Rello

Morel

Joung

Heenan

Narrowing spectrum of activity +

Narrowing spectrum of activity +

Shortening duration / discontinuing therapy

Switching from combination to monotherapy

Shortening duration / discontinuing therapy

Garnacho-Montero

Retrospective observational

Retrospective observational

Prospective observational

Retrospective observational

Retrospective observational

Prospective observational

Retrospective observational

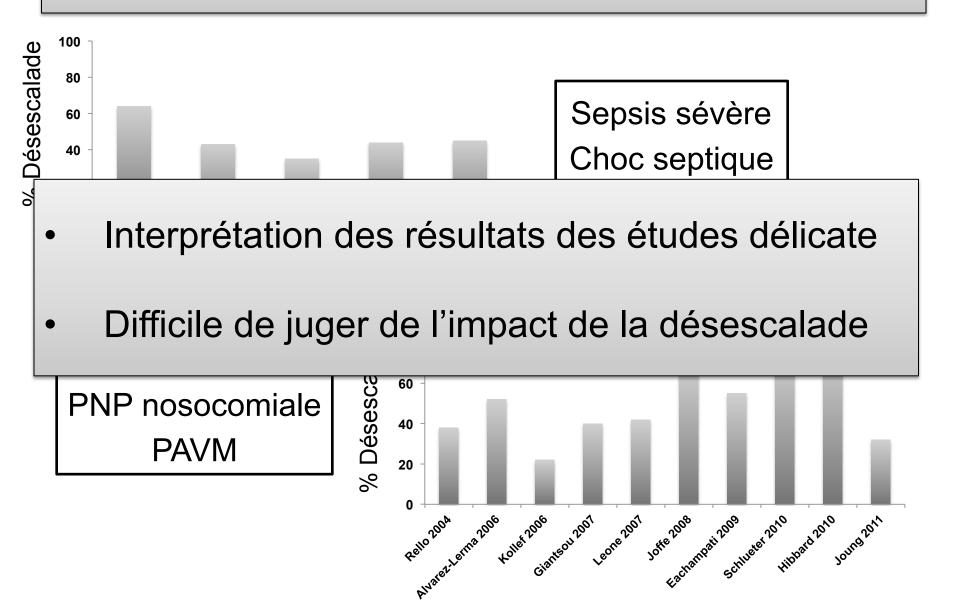
Retrospective observational

VAP

VAP

VAP

Confirmed bacteraemia


Nosocomial pneumonia

Severe sepsis and septic shock

Suspected and confirmed infections

Hospital-acquired severe sepsis (including septic shock)

#### Incidence de la désescalade très variable



ORIGINAL ARTICLE BACTERIOLOGY

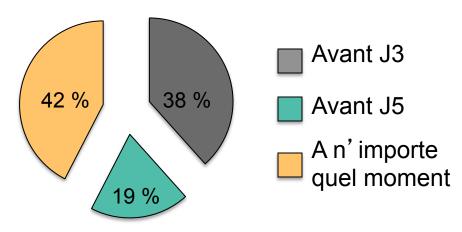
### Elaboration of a consensual definition of de-escalation allowing a ranking of $\beta$ -lactams

E. Weiss<sup>1</sup>, J.-R. Zahar<sup>2</sup>, P. Lesprit<sup>3</sup>, E. Ruppe<sup>4</sup>, M. Leone<sup>5</sup>, J. Chastre<sup>6</sup>, J.-C. Lucet<sup>7</sup>, C. Paugam-Burtz<sup>1</sup>, C. Brun-Buisson<sup>8</sup> and J.-F. Timsit<sup>9</sup>, on behalf of the 'De-escalation' Study Group

- Identification préalable de 28 experts du sujet:
- 11 réanimateurs
- 10 infectiologues
- 7 microbiologistes
- Interrogation par 4 questionnaires successifs entre juillet et novembre 2013
- 70 % de réponses similaires nécessaires pour dégager un consensus

#### Définition consensuelle de la désescalade

#### Pour 84 % des experts:


- ✓ Réduire le spectre de l'antibiothérapie
- ✓ Réduire les conséquences écologiques de l'antibiothérapie
- → Réduction du potentiel sélectionnant

#### Définition consensuelle de la désescalade

Interruption d'une des molécules du traitement probabiliste?

| Molécule interrompue                                  | Désescalade | Proportion de réponses similaires |
|-------------------------------------------------------|-------------|-----------------------------------|
| N' importe quelle molécule du traitement probabiliste | OUI         | 92%                               |
| Aminoside                                             | OUI         | 85 %                              |
| Ciprofloxacine                                        | OUI         | 100 %                             |
| Vancomycine                                           | OUI         | 96 %                              |

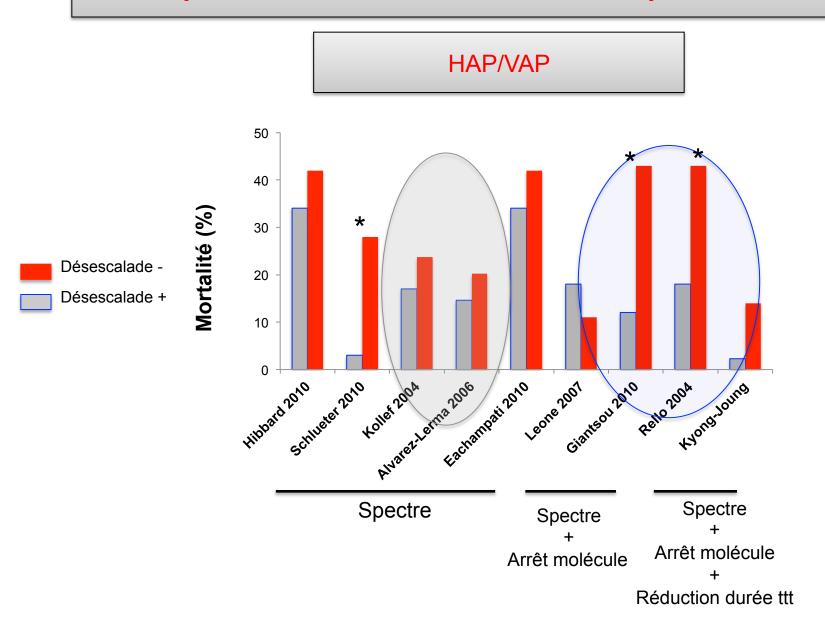
 Dans quel délai la modification de l'ATB doit-elle survenir?



Weiss E, pour le groupe « Désecalade », CMI 2015

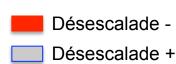
# Classement des β-lactamines en fonction de leur potentiel sélectionnant

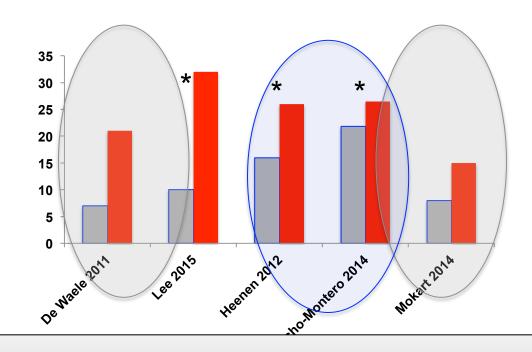
| Groupe | Molécule(s)                                                              | Proportion de<br>réponses<br>similaires (%) | Tour d' obtention du consensus |
|--------|--------------------------------------------------------------------------|---------------------------------------------|--------------------------------|
| 6      | Imipénème<br>Méropénème<br>Doripénème                                    | 85                                          | 2                              |
| 5      | Ertapénème                                                               | 81                                          | 3                              |
| 4      | Piperacilline/Tazobactam Ticarcilline/Acide clavulanique C4G Ceftazidime | 71                                          | 4                              |
| 3      | Cefotaxime-Ceftriaxone Piperacilline-Ticarcilline                        | 81                                          | 3                              |
| 2      | Amoxicilline/Acide clavulanique                                          | 88                                          | 3                              |
| 1      | Amoxicilline                                                             | 100                                         | 2                              |


# Classement des β-lactamines en fonction de leur potentiel sélectionnant

| Groupe | Molécule(s)                                                              | Proportion de<br>réponses<br>similaires (%) | Tour d' obtention du consensus |
|--------|--------------------------------------------------------------------------|---------------------------------------------|--------------------------------|
| 6      | Imipénème<br>Méropénème<br>Doripénème                                    | 85                                          | 2                              |
| 5      | Ertapénème                                                               | 81                                          | 3                              |
| 4      | Piperacilline/Tazobactam Ticarcilline/Acide clavulanique C4G Ceftazidime | 71                                          | 4                              |
| 3      | Cefotaxime-Ceftriaxone Pipéracilline-Ticarcilline                        | 81                                          | 3                              |
| 2      | Amoxicilline/Acide clavulanique                                          | 88                                          | 3                              |
| 1      | Amoxicilline                                                             | 100                                         | 2                              |

# Désescalade antibiotique en réanimation

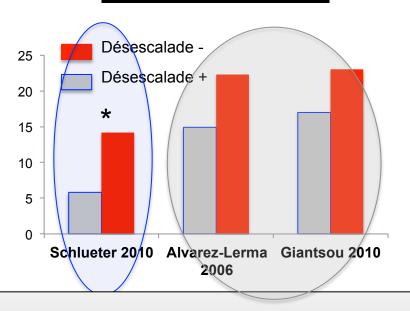

- 1. Données de la littérature
  - Définition
  - Impact sur le pronostic des patients
  - Impact sur la consommation antibiotique
  - Impact sur l'émergence de résistances bactériennes
  - 2. Etude de l'effet de la désescalade ATB dans les PAVM à BGN sur les données de la base OUTCOMFREA


#### Impact sur la mortalité des patients



#### Impact sur la mortalité des patients:








Pas d'impact négatif de la désescalade

#### Impact sur le pronostic des patients

#### Durée de séjour



#### Risque de surinfection

Pas d'impact démontré de la désescalade

Alvarez Lerma et al. Crit Care 2005 Gonzalez et al. Crit Care 2013 Mokart et al. ICM 2013

- Etudes observationnelles (4 prospectives)
- Effet de la désesacalade sur l'outcome trop rarement ajusté aux variables favorisant sa réalisation

# Mais est-il possible de se contenter d'études observationnelles?



There is no adequate evidence as to whether de-escalation of antimicrobial agents is, or is not, effective and safe for adults with sepsis, severe sepsis or septic shock.

#### SEVEN-DAY PROFILE PUBLICATION

De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial

Leone M. et al. ICM 2014

- Etude randomisée multicentrique (9 centres) sans aveugle
- 117 Sepsis sévère/choc septique documentés
- Désescalade vs maintien de l'antibiothérapie empirique
- **Definition: Diminution du spectre** de l'antibiotique pivot (classification arbitraire)
- Hypothèse primaire: Non infériorité de la désescalade en terme de durée de séjour en réa
- Endpoints secondaires: mortalité, durée de VM et d'ATB, surinfections

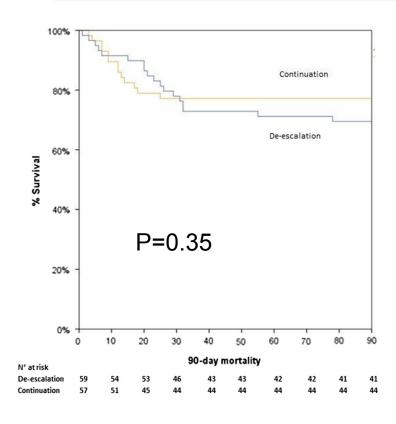
#### Déséquilibre des groupes

Table 1 Baseline characteristics of study participants

| Characteristics                                                             | De-escalation group $(n = 59)$ | Continuation group $(n = 57)$ | P     |
|-----------------------------------------------------------------------------|--------------------------------|-------------------------------|-------|
| Age (years)                                                                 | 57.9 ± 17.0                    | $66.8 \pm 14.9$               | 0.003 |
| Male sex (%)                                                                | 62.7                           | 66.7                          | 0.66  |
| SAPS II <sup>a</sup>                                                        | $43.6 \pm 18.5$                | $51.4 \pm 18.7$               | 0.03  |
| Modified SAPS II <sup>a</sup>                                               | $33.9 \pm 17.5$                | $38.1 \pm 18.3$               | 0.20  |
| Body mass index                                                             | $26.8 \pm 6.4$                 | $27.4 \pm 7.4$                | 0.65  |
| Admission cause                                                             |                                |                               | 0.56  |
| Medicine (%)                                                                | 52.5                           | 54.4                          |       |
| Trauma (%)                                                                  | 8.5                            | 15.8                          |       |
| Scheduled surgery (%)                                                       | 10.2                           | 7.0                           |       |
| Emergent surgery (%)                                                        | 28.8                           | 22.8                          |       |
| Co-morbidities                                                              |                                |                               |       |
| Chronic obstructive pulmonary disease (%)                                   | 15.3                           | 15.8                          | 0.94  |
| Diabetes (%)                                                                | 18.6                           | 28.1                          | 0.23  |
| Arterial hypertension (%)                                                   | 30.5                           | 50.9                          | 0.03  |
| Chronic heart failure (%)                                                   | 10.2                           | 8.8                           | 0.80  |
| Prior stroke (%)                                                            | 3.4                            | 7.0                           | 0.38  |
| Risk factors for multidrug-resistant pathogen <sup>b</sup> (%)              | 83.1                           | 77.2                          | 0.43  |
| Time between onset of empirical treatment and inclusion (days) <sup>c</sup> | $3.0 \pm 1.7$                  | $2.7 \pm 1.4$                 | 0.25  |
| _ ·                                                                         | 3.0 [2.0–4.0]                  | 2.0 [2.0–3.5]                 |       |
| Time between sepsis and inclusion (days) <sup>c</sup>                       | $3.2 \pm 1.6$                  | $2.7 \pm 1.4$                 | 0.05  |
|                                                                             | 3.0 [2.0–4.0]                  | 2.0 [2.0–3.0]                 |       |

Tendance à plus de PNP dans le groupe désescalade (57% vs 40%, p=0.06)

Utilisation plus fréquente de carbapénèmes dans le groupe désescalade


Leone M. et al. ICM 2014

- Différence de DDS en réa= 3.4 j (IC95= -1.7-8.5)
  - → Impossible de conclure à une non-infériorité de la désescalade

- Différence de DDS en réa= 3.4 j (IC95= -1.7-8.5)
  - → Impossible de conclure à une non-infériorité de la désescalade
- Plus de surinfection bactérienne dans le groupe Désescalade (27% vs 11%, p=0.03)

- Différence de DDS en réa= 3.4 j (IC95= -1.7-8.5)
  - → Impossible de conclure à une non-infériorité de la désescalade
- Plus de surinfection bactérienne dans le groupe Désescalade (27% vs 11%, p=0.03)
- Mais après prise en compte du déséquilibre des groupes:
- Pas de différence de DDS après ajustement au SAPS2
- DDS liée à la distribution des PNP
  - →Analyse de sous-groupe 56 PNP: pas de différence de DDS (p=0.53) et de surinfection (p=0.2)

Leone M. et al. ICM 2014



| Duration                             | De-escalation group $(n = 59)$         | Continuation group $(n = 57)$                      | P    |
|--------------------------------------|----------------------------------------|----------------------------------------------------|------|
| Number of ICU-free days <sup>a</sup> | $13.\overline{2} \pm 10.6$ $18 [0-23]$ | $15.0 \pm 11.3$<br>21 [0-25]                       | 0.21 |
| Ventilator-free days <sup>a</sup>    | $18.9 \pm 11.6$ $23 [6-29]$            | $19.\overline{3} \pm 1\overline{1.8}$<br>26 [6–29] | 0.55 |
| Catecholamine-free days <sup>a</sup> | $22.3 \pm 10.3$<br>28 [21–29]          | $21.6 \pm 11.2$<br>28 [16–29]                      | 0.93 |

# Désescalade antibiotique en réanimation

#### 1. Données de la littérature

- Définition
- Impact sur le pronostic des patients
- Impact sur la consommation antibiotique
- Impact sur l'émergence de résistances bactériennes
- 2. Etude de l'effet de la désescalade ATB dans les PAVM à BGN sur les données de la base OUTCOMEREA

# Impact de la désescalade sur la consommation d'antibiotiques

- Très peu évalué
- Diminution de la durée d'antibiothérapie par la désescalade jamais démontrée:
- Pas de différence

Alvarez-Lerma et al. Crit Care 2005 Shime et al. Infection 2013

 Augmentation significative de la durée médiane d'ATB en réa dans le groupe désescalade

Mokart et al. ICM 2014

Impact de la désescalade sur la consommation d'antibiotiques

 Nombre global de jours avec antibiotique(s) pivot plus élevé (14.1 j vs 9.9 j, p=0.04) dans le groupe désescalade (plus de surinfection)

- Nombre de jours sans ATB large spectre (entre J1 et J28)
- Sans carbapénème: NS
- Sans ATB actif contre SARM (entre J1 et J28): NS
- Sans ATB actif contre Pseudomonas aeruginosa supérieur dans le groupe désesacalde (p<0.001)</li>

# Désescalade antibiotique en réanimation

- 1. Données de la littérature
  - Définition
  - Impact sur le pronostic des patients
  - Impact sur la consommation antibiotique
  - Impact sur l'émergence de résistances bactériennes
  - 2. Etude de l'effet de la désescalade ATB dans les PAVM à BGN sur les données de la base OUTCOMEREA

### Aucune preuve de l'impact de la désescalade sur la résistance bactérienne

- Très peu évalué: données de 2 études
- Pas de différence d'acquisition de portage de BMR et d'infection à BMR entre les groupes désescaladé et non désescaladé

Gonzalez et al. Crit Care 2013

Pas d'effet sur l'écologie locale à J8 du traitement ATB
 Leone M et al. ICM 2014

Jan J. De Waele Matteo Bassetti Ignacio Martin-Loeches

### Impact of de-escalation on ICU patients' prognosis

Sécurité et efficacité de la désescalade, définie par la seule réduction du spectre remise en question...

### Utilisation de la classification des β-lactamines selon leur pouvoir sélectionnant pour étudier la désescalade

- Définition de la désescalade:
- Réduction du pouvoir sélectionnant
- Survenant durant les 5 premiers jours de traitement

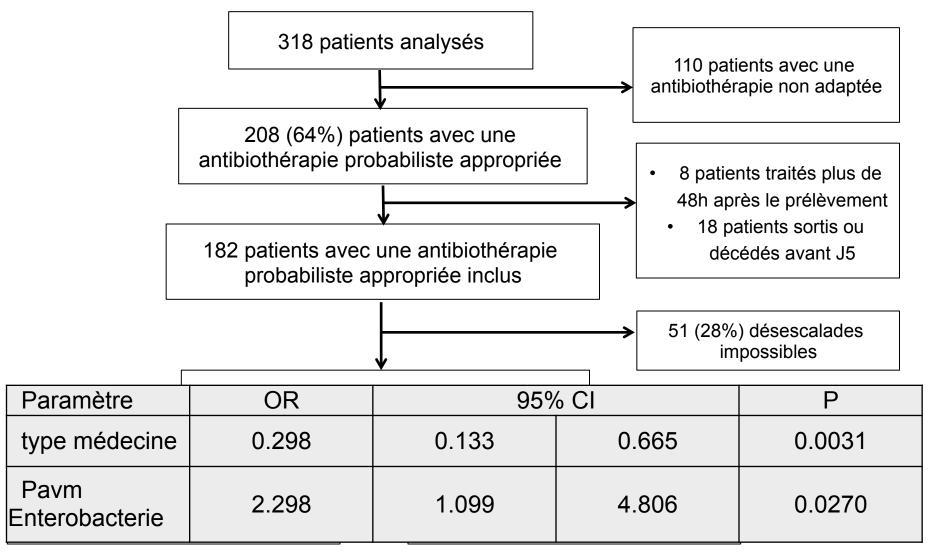
| Groupe | Molécule(s)                                                              |
|--------|--------------------------------------------------------------------------|
| 6      | Imipénème<br>Méropénème<br>Doripénème                                    |
| 5      | Ertapénème                                                               |
| 4      | Piperacilline/Tazobactam Ticarcilline/Acide clavulanique C4G Ceftazidime |
| 3      | Cefotaxime-Ceftriaxone Piperacilline-Ticarcilline                        |
| 2      | Amoxicilline/Acide clavulanique                                          |
| 1      | Amoxicilline                                                             |

# Etude de l'effet de la désescalade antibiotique dans la PAVM à BGN sur l'évolution des patients en réanimation. Analyse des données de la base OUTCOMEREA

E.Weiss<sup>1,2</sup>, J.R. Zahar<sup>3,4</sup>, M. Garrouste-Orgeas<sup>5</sup>, S. Ruckly<sup>6</sup>, A. Bonadona<sup>7</sup>, B.

Misset<sup>5</sup>, C. Schwebel<sup>6,7</sup>, J.F. Timsit<sup>!,2</sup>, pour le groupe OUTCOMEREA

- 1. Département d'anesthésie-réanimation, Hôpital Beaujon, Clichy
- 2. Université Paris 7 Denis Diderot, Sorbonne
- 3.CHU d'Angers
- 4. Université d'Angers
- 5. Service de réanimation polyvalente, hôpital St Joseph, Paris
- 6. Université Joseph Fourier, Grenoble
- 7. Service de réanimation médicale, Hôpital Albert Michallon
- 8. Service de réanimation médicale infectieuse, Hôpital Bichat, Paris




#### **Objectifs**

- •Etude des conséquences de la désescalade antibiotique sur:
  - L'évolution clinique des malades
  - L'acquisition de BMR
  - La consommation d'antibiotiques

Tous les épisodes de PAVM à BGN survenus dans deux services de réanimation polyvalente entre 1997 et 2012 et traités par une antibiothérapie probabiliste adaptée dans les 24 premières heures

#### Flow-Chart



Weiss E. et al. SRLF 2014

### Impact de la désescalade sur l'outcome des patients

|                                     | Désescalade non | Désescalade  |         |
|-------------------------------------|-----------------|--------------|---------|
| Variable                            | faite           | faite        | Pvalue* |
|                                     | n=61            | n=70         |         |
| Récidive de pavm                    | 17 (27.9)       | 19 (27.1)    | 0.67    |
| Récidive bactériemie                | 7 (11.5)        | 8 (11.4)     | 0.99    |
| Nbre de jours de VMI, mediane (IQR) | 12 [8 ; 21]     | 14 [8 ; 24]  | 0.23    |
| Durée de réa depuis VAP, mediane    | 16 [10 ; 24]    | 18 [12 ; 27] | 0.64    |
| (IQR)                               | 10 [10 , 2 1]   | 10[12,21]    | 0.01    |
| Mortalité à J28                     | 16 (26.2)       | 22 (31.4)    | 0.59    |

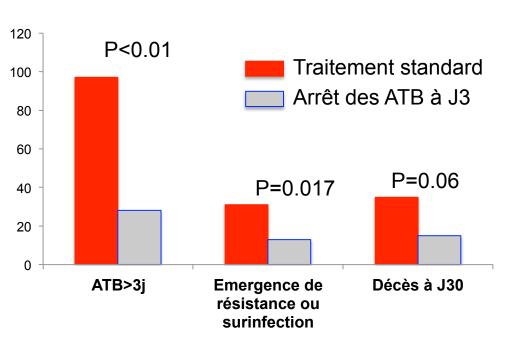
Pas d'impact négatif de la désescalade sur le pronostic des patients

# Impact de la désescalade sur la consommation d'antibiotiques

|                                               | No-de-escalation | De-escalation | P value* |
|-----------------------------------------------|------------------|---------------|----------|
| During VAP treatment                          |                  |               |          |
| - ICU length of stay                          | 7 [7 ; 7]        | 7 [7 ; 7]     | 0.72     |
| - Number of antibiotic-free days              | 0 [0;0]          | 0 [0;0]       | 0.22     |
| - Number of carbapenem-free days              | 7 [6;7]          | 7 [5 ; 7]     | 0.20     |
| - Number of group 4 molecule-free days        | 2 [0;7]          | 5 [3 ; 6]     | <.01     |
| - Number of FQ-free days                      | 7 [3 ; 7]        | 7 [7 ; 7]     | 0.06     |
| During the time period within 21 days after V | 'AP              |               |          |
| treatment initiation                          |                  |               |          |
| - ICU length of stay                          | 16 [10 ; 21]     | 18 [12 ; 21]  | 0.64     |
| - Number of antibiotic-free days              | 1 [0;5]          | 2 [0 ; 6]     | 0.74     |
| - Number of carbapenem-free days              | 12 [9 ; 19]      | 15 [10 ; 19]  | 0.45     |
| - Number of group 4 molecule-free days        | 8 [3 ; 13]       | 11.5 [7 ; 18] | <.01     |
| - Number of FQ-free days                      | 13 [8 ; 18]      | 15.5 [9 ; 21] | 0.20     |

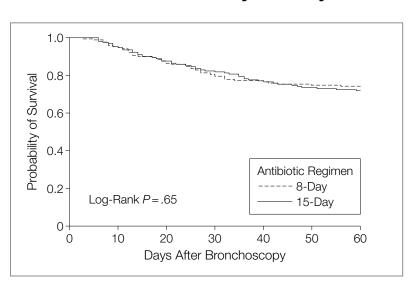
Diminution de la consommation de certaines classes ATB au profit de certaines autres...

Gro


### Effet de la désescalade sur l'acqusition de BMR dans les 21 jours suivant le début du traitement

|                                                                | No-de-escalation | De-escalation | P value* |
|----------------------------------------------------------------|------------------|---------------|----------|
| Acquisition of multi-drug resistant strains                    | 13 (21.3)        | 10 (14.3)     | 0.32     |
| - Acquisition of ESBL enterobacteriaceae                       | 5 (8.2)          | 1 (1.4)       | 0.06     |
| - Acquisition of resistant<br>Pseudomonas Aeruginosa           | 3 (4.9)          | 5 (7.1)       | 0.54     |
| - Acquisition of AmpC-<br>hyperproducing<br>enterobacteriaceae | 2 (3.3)          | 3 (4.3)       | 0.52     |
| - Acquisition of MRSA                                          | 1 (1.6)          | 1 (1.4)       | 0.50     |

Impact de la réduction du pouvoir sélectionnant de l'antibiothérapie sur l'acquisition de résistance bactérienne doit être spécifiquement évalué


### Pour diminuer l'émergence de résistance: réduire le volume global de prescription!

- Arrêt d'un traitement inutile
- Traitement empirique en cas d'infiltrat pulmonaire en réanimation
- Arrêt à J3 si absence de signe confirmant l'infection



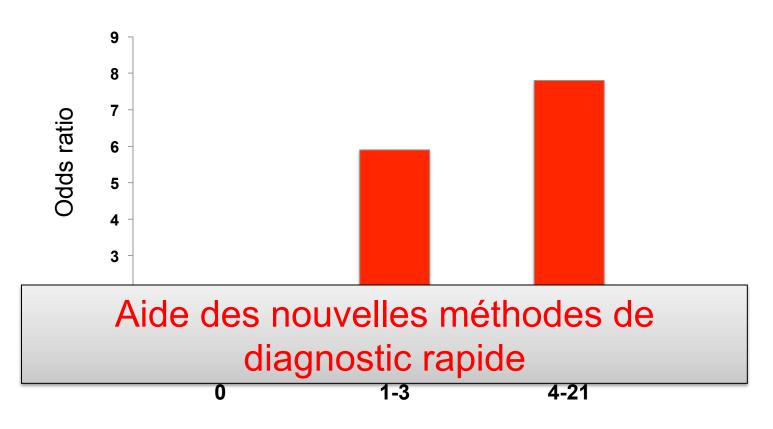
 Diminution de la durée de traitement

PAVM traitement 7j vs 15j



Si récidive, moins de BMR dans le groupe 8j 42% vs 62% (p=0.04)

#### Différentes classes= différents risques écologiques?


 Evaluation du risque écologique des ATB: études animales ou chez volontaires sains

|                          | Elimination fécale | Activité anti-anaérobie |
|--------------------------|--------------------|-------------------------|
| Carbapénème              | Basse              | +++                     |
| Clindamycine             | Biliaire           | +++                     |
| Pipéracilline-tazobactam | +/- Elevée         | +++                     |
| Fluoroquinolones         | Elevée             | +/-                     |

- Difficile d'adapter ces données chez l'homme en clinique en raison de facteurs confondants (SNG, IPP)
- Effet des ATB sur la flore de barrière dépend de la molécule mais aussi
- Des caractéristiques des patients et des situations cliniques
- Doses, caractéristiques PK/PD et de la durée d'administration

### Délai de désescalade de 3 jours trop tardif pour empêcher l'acqusition de résistance?

Risque de colonisation intestinale par des BGN carbapénème R



Durée d'exposition aux carbapénèmes (j)

# Conclusions: impact de la désescalade sur le pronostic des patients

- Pas d'impact négatif de la désescalade sur la mortalité
- De nombreuses études observationnelles soulignant la safety de cette mesure
- Les résultats contrastés d'une seule étude randomisée (comportant de nombreux biais):
- Ne doivent absolument pas faire abandonner ces mesures
- Doivent inciter à la réalisation d'une nouvelle étude randomisée testant une désescalade protocolisée basée sur une définition consensuelle

# Conclusions: impact de la désescalade sur la consommation d'antibiotiques et sur la résistance bactérienne

•Pas de preuve de l'efficacité de la désescalade à l'heure actuelle:

-Sur la
-Sur la
-Sur la
-Sur la

Diminuer le volume global de
prescription d'antibiotiques....

•Difficile de juger les effets ecologiques propres à chaque molécule ATB

# Comité d'experts « Désescalade » Coordination: J.F. Timsit, J.R. Zahar

| <u>Réanimateurs</u>                                                                                       | Infectiologues                                                                                | <u>Microbiologistes</u>                                                                      |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| C. Brun-Buisson F. Bruneel J. Chastre S. Lasocki M. Leone P. Montravers S. Nseir C. Paugam-Burtz S. Pease | S.Alfandari B. Fantin B. Gachot A. Lefort P. Lesprit J.C. Lucet G. Potel C. Pulcini C. Rabaud | L. Armand-Lefevre J. D. Cavallo V. Jarlier O. Joint-Lambert J. Robert E. Ruppé P.L. Woerther |
| M Wolff                                                                                                   | P Tattevin                                                                                    |                                                                                              |